

Investigating the Relationships between the Learning Ecology, Self-efficacy, and Academic Achievement during Covid-19

Dr. Sadiq MidrajDr. Jake MaddenDr. Asli HassanDr. Jessica MidrajZayed UniversityAl Yasat Private SchoolKhalifa UniversityKhalifa University

August 3, 2020

sexplorance.

Agenda

Introduction - Purpose, research questions and variables **The Context -** Curriculum, Assessment, Students & the impact of COVID-19 The MAP Test - Domains & prior research **Self-efficacy** - Domains, sample items & prior research **The Learning Ecology** - Domains, sample items & prior research **Questions & Answers**

bluenotes

explorance.

UNIVERSITY OF

Purpose

The study:

measure the associations between cycle two **students' self-efficacy** beliefs, perception of the **learning ecology**, and **academic achievement and growth**

Impact of the COVID 19 pandemic:

swift movement from face-to-face instruction to synchronous, asynchronous online and blended learning

Modifications:

instruments that measure students' perspectives on the predictor variables

The Research Variables

DEPENDENT VARIABLES	INDEPENDENT VARIABLES
Achievement & Growth	Student's Self Efficacy
Math	Math; Science; Language; IT
 Science 	Learning Ecology
Language	Math; Science; Language; IT
	Demographic
	Grade, SES, etc.

THE CONTEXT DR. JAKE

LOUISVILLE.

sexplorance.

Context

- Schooling in the UAE - K-12 Education - Public & Private Schooling Education Reform

Types of Curricula

Curriculum Requirements

 National requirements + 4 Arabic Subjects

https://psp.adek.gov.ae/en/investors

LOUISVILLE.

sexplorance.

Assessment

As per National Curriculum Statutory Requirements
 Guided by UAE Inspection Framework
 MOE Equivalency for Foreign Curriculum Schools

Students

LOUISVILLE.

*explorance.

The Impact of COVID-19

School Closure to Reopening Procedures/policies
 Student Registrations
 Staffing Challenges

 Distance learning & Re-entry

 Resource Priorities

THE MAP TEST DR. JESSICA

LOUISVILLE.

explorance.

MAP Growth Assessment

- Tracks growth & achievement (K-12)
- Used internationally
- Computer adaptive
- Administered 2-3 times/year
- Strong reliability indices (NWEA, 2011)

MATH Standard Error Possible rang 1/22/2017 – Rapid-Guessi Est. Impact R Growth: Math A CLOSE	EMATICS or: +/-2.9 (e: 247-253 60 minutes ing %: N/A tapid-Guessing % on RIT: 1 6+ TN 2016 HIGHLIGHTS	READING LANGU	JAGE US 215	sage science	nu	vea
• ()-()- Compared to his overall score, Vern Geometry. As a student, he can take when he is learning new material.	on has a strength in e advantage of this stren	gth Q Vernon's math Algebraic Thin skills and cond	ematics so king. Visit cepts he is	core could benefit from foc Instructional Areas for mor ready to learn.	us in Operations an e details about whic	d ch
comparisons 🛛 🖉	∿s INST	RUCTIONAL AREAS	0	GROWTH GOAL	S Ø	⁵ .5
GROWTH & ACHIEVEMENT MEASURES	242	Operations and Algebraic Thinking	\rightarrow s	PRING 2017 GOAL	Score when set:	248
Norms Percentile Quad	rant Chart	♦Suggested Area of Focus	_	251 (+3)	(Winter 2017)	
GROWTH ACHIEVEMENT 77th 97th High	a Growth 245	Statistics and Probability	→	Past Goals		
	252	The Real and Complex Number Systems	\rightarrow V	VIN 2017 GOAL	Actual Score: Goal:	248 245
Proficient State XYZ Assessment	257	Geometry	\rightarrow	MET	Score when set: (Fall 2016)	242
Un Track ACT College Readiness		Relative Strength				

Why use MAP growth assessment

Common measure- all schools following the American curriculum must take it
achievement scoregrowth scoreengagement metrics (NWEA, 2017)

A	chieven	nent St	atus and	Growt	h Rep	ort —									ncludes me	asuremen	tof		
		Achiever	ment Status					G	rowth						rapid	guessing			
	Fall	2015	Winter 2	2016			Studer	nt			Comp	arative	J	K	L	М		Ν	
	RIT Range	Percentile Range	RIT Range	Percentile Range	Projected	Projected	Observed	Observed Growth	d Growth	Met Projected	Conditional Growth	Conditional Growth	Test RIT	Rapid-	Test RIT 10	Assessment	Mat	hematic	s:
-	(+/- SEM)	(+/- SE)	(+/- SEM)	(+/- SE)	RIT	Growth	Growth	SE	Index	Growth	Index	Percentile	Score	duessing /v v	Point Kange	Name NAME 21	Geor	metry	<u> </u>
	208- 211- 214	57 -67 -75	217 -220 -223	72 -78 -84	215	4	9	4.3	5	Yes	1.0	84	233	11	231-240	MAP: Math 2-	> 2	31-240	-
	204-207-210	45 -54 -62	212 -215 -218	57 -66 -73	211	4	8	4.23	4	Yes‡	0.8	80	229	6	221-230	MAP: Math 2-	5 2	41-250	_
	210- 213- 216	62 -70 -77	214 -217 -220	63 -71 -78	216	3	4	4.21	1	Yes [‡]	0.2	56	233	22	231-240	MAP: Math 2-	5 2	51-260	_
											(NWE	EA, 202	(0)						

Research with MAP

Educational studies utilizing MAP achievement and growth data Ex. Blended learning (Fazal & Minaz, 2019; Balentyne & Varga, 2017; Koenig, 2018)

Minimal research in using MAP achievement and growth data in relation to students' self-efficacy and/or the learning environment

Ex. Reading (Hager, 2017; Sefkow, 2016)

SELF-EFFICACY DR. ASLI

LOUISVILLE.

explorance.

Self-efficacy – Bandura

Self-efficacy is defined as the belief or perception that one is capable of taking the necessary actions to succeed at a given task (Bandura, 1997).

One of the greatest contributor to students' confidence and their ability to achieve in school is their **past performance** (Bandura, 1993).

Self-efficacy

Scales	Description
1-Mastery Experiences	Having success in mastering a task.
2-Vicarious Experiences	Observing people around us succeed.
3-Social Persuasions	Being influenced by people we admire.
4-Overall Disposition (emotional & psychological states)	Your mental state will influence how you judge your self-efficacy.

Self-efficacy

Scales	Sample Statements
1-Mastery Experiences	I can learn math topics quickly.
2-Vicarious Experiences	I can apply what I learn from observing others in my science lab class.
3-Social Persuasions	My friends have told me that I am good in reading/writing.
4-Overall Disposition (emotional & psychological states)	I enjoy using computers to do my schoolwork.

Self-efficacy – Previous Research

Ketelhut, D. J. (2004) The Impact of Student Self-efficacy on Scientific Inquiry Skills: An Exploratory Investigation in River City, a Multi-user Virtual Environment. Journal of Science Education and Technology, Vol. 16, No. 1, February 2007 (2006). DOI: 10.1007/s10956-006-9038-y.

Siegle, D., & McCoach, D. B. (2007). Increasing student mathematics self-efficacy through teacher training. Journal of Advanced Academics, 18, 278–312.

LOUISVILLE. CEPTION

THE LEARNING ECOLOGY DR. SADIQ

LOUISVILLE.

sexplorance.

The Learning Ecology - Sample Items

Scale	Example
1. Personal relevance	What I learn in math is relevant to my daily life.
2. Uncertainty	I learn that there are many ways to solve math problems.
3. Critical voice	I feel safe questioning what or how I am being taught in the math class.
4. Shared control	In math class, I help the teacher to plan what I am going to learn.
5. Student negotiation	In math class, other students may ask me to justify my answers.
	NA OLANO TA LA CARTA AND AND AND AND AND AND AND AND AND AN

(Johnson & McClure, 2004, p. 68; Taylor et al., 1997, p. 296).

Prior Research on Learning Ecology

Language

Language learning and teachers' attitudes (Käfer et al., 2018)

Using IT and vocabulary Learning (Huang et al., 2016)

Math

The instructional quality and students' achievement (Arens, & Möller, 2016)

Classroom environment, math self-efficacy & math performance (Fast et al., 2010)

Science:

Perceptions of constructivist learning; sophisticated epistemological beliefs; teachers' & students' science self-efficacy; students' achievement in chemistry (Pamuk, Sungur, & Oztekin, 2017)

Blended Learning

Teacher's engagement and students' perception of e-learning (Kerzic, et al., 2019)

Summary

The research study investigates the complex interrelationships between cycle two students' academic achievement and growth, demographic variables, learning ecology, and self-efficacy in language, math, science, and virtual learning tools and skills in UAE private schools.

The MAP growth test measures achievement and growth.

Self-report surveys measure self-efficacy, learning ecology and crucial computer skills.

The study will identify the predictors of students' achievement to reinforce students' success and recommend plans for remedial work.

References

Arens, A. K., & Möller, J. (2016). Dimensional comparisons in students' perceptions of the learning environment. *Learning and Instruction*, 42, 22-30. doi:10.1016/j.learninstruc.2015.11.001

Balentyne, P., & Varga, M. (2017). Attitudes and achievement in a self-paced blended mathematics course. *Journal of Online Learning Research*, 3(1), 55-72. Retrieved from https://eric.ed.gov/contentdelivery/servlet/ERICServlet?accno=EJ1148593

Bandura, A. (1993). Perceived self-efficacy in cognitive development and functioning. *Educational Psychologist*, 28(2), 117–148.

Bandura, A. (1997). Self-efficacy: The exercise of control. New York: Freeman.

Department Of Education And Knowledge. (n.d). Private Schools Overview. Retrieved from https://psp.adek.gov.ae/en/investors

Fast, L. A., Lewis, J. L., Bryant, M. J., Bocian, K. A., Cardullo, R. A., Rettig, M., & Hammond, K. A. (2010). Does math self-efficacy mediate the effect of the perceived classroom environment on standardized math test performance? *Journal of Educational Psychology*, 102(3), 729-740. doi:10.1037/a0018863

Fazal, M. & Minaz, B. (2019). Blended learning in middle school math: The question of effectiveness. *Journal of Online Learning Research*, 5(1), 49-64. Retrieved from https://eric.ed.gov/contentdelivery/servlet/ERICServlet?accno=EJ1208816

Hager, J. (2017). The Relationship of Reading Self-Efficacy and Reading Achievement in Second Grade Students (Unpublished master's paper). University of Montana, Montana. Retrieved from https://scholarworks.umt.edu/cgi/viewcontent.cgi?article=12111&context=etd

Huang, C. S. J., Yang, S. J. H., Chiang, T. H. C., & Su, A. Y. S. (2016). Effects of situated mobile learning approach on learning motivation and performance of EFL students. *Journal of Educational Technology & Society*, 19(1), 263-276. Retrieved from https://search-proquest-com.zulib.idm.oclc.org/docview/1768612513?accountid=15192

Käfer, J., Kuger, S., Klieme, E., & Kunter, M. (2018). The significance of dealing with mistakes for student achievement and motivation: Results of doubly latent multilevel analyses. *European Journal of Psychology of Education*, 1-23. doi:http://dx.doi.org.zulib.idm.oclc.org/10.1007/s10212-018-0408-7

Kerzic, Damijana, et al. "Exploring critical factors of the perceived usefulness of blended learning for higher education students." PLoS ONE, vol. 14, no. 11, 2019, p. e0223767. Gale In Context: Opposing Viewpoints, https://link-gale-

com.zulib.idm.oclc.org/apps/doc/A606436408/OVIC?u=zayed&sid=OVIC&xid=8c68c366. Accessed 30 July 2020.

🛠 explorance. 🛛 🗠

Ketelhut, D. J. (2004) The Impact of Student Self-efficacy on Scientific Inquiry Skills: An Exploratory Investigation in River City, a Multi-user Virtual Environment. *Journal of Science Education and Technology*, Vol. 16, No. 1, February 2007 (2006). DOI: 10.1007/s10956-006-9038-y.

Koenig, B. (2018). Effects of Blended Learning on At-Risk Youth: A Quantitative Study. Retrieved from URL: http://gateway.proquest.com.libconnect.ku.ac.ae/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqm&rft_dat=xri:pqdiss:10981950

NWEA, (2011). Technical Manual For Measures of Academic Progress[®] (MAP[®]) and Measures of Academic Progress for Primary Grades (MPG). Retrieved from https://www.richland2.org/RichlandDistrict/media/Richland-District/AdvancED/Standard%205/5.1/5-1-NWEA-Technical-Manual-for-MAP-and-MPG.pdf

NWEA. (2020). Map Growth-Map Reports Reference. Retrieved from https://teach.mapnwea.org/impl/PGM2_MAP_Reports_Reference.pdf

NWEA. (2017). NWEA Guidance on the Interpretation and Use of New Engagement Metrics in MAP Growth Reports. Retrieved from https://www.nwea.org/content/uploads/2018/01/NWEA-Guidance-on-the-Interpretation-and-Use-of-New-Engagement-Metrics-in-MAP-Growth-Reports-1.pdf

Pamuk, S., Sungur, S., & Oztekin, C. (2017). A Multilevel Analysis of Students' Science Achievements in Relation to their Self-Regulation, Epistemological Beliefs, Learning Environment Perceptions, and Teachers' Personal Characteristics. *International Journal of Science & Mathematics Education*, 15(8), 1423–1440. https://doi-org.zulib.idm.oclc.org/10.1007/s10763-016-9761-7

Sefkow, D. (2016). The Relationship between Self-efficacy and Reading Test Score Improvement in Elementary English Learners (Unpublished master's capstone). Hamline University. Minnesota. Retrieved from https://pdfs.semanticscholar.org/befb/0636894b97d2ad9b18bef1381b9144410839.pdf Siegle, D., & McCoach, D. B. (2007). Increasing student mathematics self-efficacy through teacher training. *Journal of Advanced Academics*, 18, 278–312. UAE Ministry of Education. (n. d.). The Ministry's Activities related to Open Data. Retrieved from https://www.moe.gov.ae/En/OpenData/pages/home.aspx Zubeyde Demet Kirbulut & Esen Uzuntiryaki-Kondakci (2019) Examining the mediating effect of science self-efficacy on the relationship between metavariables and science achievement, *International Journal of Science Education*, 41:8, 995-1014, DOI: 10.1080/09500693.2019.1585594

LOUISVILLE. 🔅 explorance.

LOUISVILLE.

*explorance.

