Characterizing gaps in achievement in introductory STEM courses An Intersectional Analysis

Linda Fuselier, PhD, Associate Dean, College of Arts & Sciences, Biology Department, University of Louisville

STEM as a national priority

- Attracting and keeping STEM students is important to our nation's long-term success (Executive office of the President 2012).
- The USA needs a 34% increase in the production of STEM degrees (Holdren and Lander, 2010).
- Fewer students pursue STEM majors
- The lowest retention rates among all academic disciplines (NAS 2007).
- Variation among STEM disciplines.

Students who leave STEM

- 48% of the students who start STEM majors leave (Chen and Soldier, 2013).
- Within the first two years of UG study (Center for Institutional Data Exchange Analysis 2000).
- Students who switch out are some of the most qualified students and are also disproportionately women and non-white (NAS 2007).
- African-American students are the most likely ethnic group to leave STEM majors by dropping out of college (29%) or switching to a non-STEM degree (36%) (NCES)
- Wide variety of overlapping reasons

GPA matters in STEM

- Achievement is a strong predictor of retention in STEM disciplines, particularly relative to achievement in non-STEM courses(Beasley and Fischer, 2012; Riegle-Crumbetal., 2012).
- Achievement gaps are mirrored by gaps in latent traits, such as a student's sense of belonging, science identity, and self-efficacy (Eddy and Brownell, 2016).
- Failure has emotional and financial impacts
- Persistent impacts of GPA:
 - Honors, awards
 - Scholarships
 - Funding implications for students from low socioeconomic status
 - Admission to programs
 - Professional medical, dental, etc.
 - Graduate and undergraduate
 - Employment

Achievement Gaps - Gender

- Women make up nearly 50% of the entire US workforce but only 25% of the science and engineering workforce (National Science Board, 2004)
- Some studies find Gender Achievement Gaps and others don't
- Differences that favor men have been identified in exam performance, participation in whole-class discussions, and who is viewed as most knowledgeable about course content (Eddy, Brownell, & Wenderoth, 2014; Grunspan et al., 2016)
- Even in Life Sciences where gender ratio is close to 1:1
 - Numbers do not indicate equity

Persistent Gendered Performance Difference in SM classes

- Based analysis on Matz et al. 2017;
- Six years, five research universities, 249 courses in 13 disciplines
- GPAO grade point average in other classes (excluding the target)
 - Good predictor of performance
- Difference between performance in class vs. other classes
- GPA > GPAO = positive impact = <u>bonus</u>
- GPA < GPAO = negative = <u>penalty</u>
- Difference between women and men = Gendered Performance Difference
- Biology, chemistry and physics <u>lectures</u> = favor men
- <u>Lab</u> courses = more equitable
- Persistent Gender Achievement Difference in Intro SM classes

Achievement Gaps - Race

- Proportion of underrepresented minorities (URM) in college has increased but the proportion pursuing STEM majors has not (NCES 2017).
- 24% of African American, Latina/o, and Native American students complete a science bachelor's degree in six years, compared to 40% of White students (Center for Institutional Data Exchange Analysis 2000).
- URM = 25% of US workforce; 18% of UG, 2.5% STEM majors, 6% STEM workforce
- some traditionally underserved students' grades decline in STEM courses, but remain high in non-STEM courses
- Not about abilities systemic inequities

Intersectional Identities

Multiple, interacting, dimensions of identity

how multifaceted identities are positioned in and experience oppression

Multiple systemic disadvantages

- more likely to experience poor academic performance and may ultimately make the decision to leave STEM disciplines for reasons that have nothing to do with their capabilities in math and science (Gayles & Ampaw, 2016; Reyes, 2011)
- Women-of-color are virtually absent from STEM fields in the top US academic institutions (NAS 2006).

Research Questions

1. Do students in 10 Gender-Race (G-R) categories experience grade bonuses or penalties in introductory science and math classes?

2.a. What factors besides G-R influence course GPA?

2.b. After accounting for these factors, is there a G-R performance difference?

Data

- Institutional Research office provided data
- 12 semesters, including summer terms
- Between fall 2015 and spring 2019
- Introductory science and math classes (SM)
 - Science and math majors
 - Non-majors
 - Lecture and Lab courses
- The first courses encountered by SM majors,
 - Gatekeeper courses often result in high attrition rates for all students, disproportionately for URM students, (Schneider 2000; Vetter 1994).

Introductory, Gatekeeper, Courses

Table 1. Courses used in the study (n=31).

Discipline	Туре	Lecture	Lab	n
Biology	Non-majors	102	104L	2
	Majors intro sequence	240, 242	244L	3
Chemistry	Non-majors	101, 105	103L,	3
	Majors intro sequence	201, 202	207L, 208L, 209L, 210L	6
Math	Non-majors	105, 109, 190		3
	Pre-requisites for STEM	111, 180, 205		3
Physics	Non-majors	107, 111B	108L	3
	Pre-requisites for STEM	221, 222	223L, 224L	4
	Majors	298, 299	295L, 296L,	4

Gender and Race Data

- Binary gender = M or F
- 9 race categories
 - 5 used in the analyses

Code	Race
1	Non-resident alien
2	Black/African American
3	American Indian
4	Asian
5	Hispanic
6	White
7	unknown
8	2 or more races
9	Native Hawaiian or Pacific Islander

Student population

Total across all classes												
	Wor	nen	Μ	en								
	n	%	n	%								
Black	2493	5.9 %	1474	3.5%								
Asian	1476	3.5%	1418	3.4%								
Hispanic	1123	2.7%	1023	2.4%								
White	14384	34.2%	16287	38.7%								
2 or more	1246	3.0%	1168	2.8%								
	49	5	1%									

Q1, Bonus or Penalty: Methods

- Following Matz et al. 2017
- Grade anomaly = Grade in class grade in other classes (excluding the target class)
- GPA GPAO
- Relative performance
 - + Positive Grade "bonus"- Negative Grade penalty

Mostly grade penalties; lecture > lab

AGA – Average Grade Anomaly – Lecture > Lab

		BIOLOGY CHE							IM	STF	RY					MA	AT ⊢	ł						P⊢									
					LA	BS							LAB	S									В		I	AB	S						
		1	2	2	1	2	1	1	2	2	1	2	2	2	2	1	1	1	1	1	2	1	1	1	2	2	2	2	2	2	2	2	
		0	4	4 2	0	4	0	0	0	0	0	0	0	0	1	0	0	9	8	1	0	0	1	0	2	2	9 E	9	2	2	9	9	Total n
Momon	Black				4	4 N				2	3	/ 	0	9	0		9				5 N		-	0	3	4	5	0		2	0 N	9	10
women	BIACK	IN	IN	IN		IN		IN	IN	IN		IN						IN	IN	IN	IN								IN		IN	IN	19
	Asian	Ν	Ν	Ν		Ν	N	Ν	Ν	Ν						Ν	N	Ν	Ν	Ν	Ν								Ν		Ν	Ν	17
	Hispanic	Ν	Ν	Ν		Ν	N	Ν	Ν	Ν						N	Ν	Ν	Ν	Ν	Ν	Ν	Ν						Ν		Ν	Ν	19
	White	Ν	Ν	Ν		Ν	N	Ν	Ν	Ν						Ν	N	Ν	Ν	Ν	Ν	N	N						Ν	Ν	Ν	Ν	20
	2 or more	Ν	Ν	N		Ν	N	Ν	Ν	N						Ν	Ν	Ν	N	N	Ν	N	N						N	N	Ν	Ν	20
Men	Black	Ν	Ν	Ν	Ν	Ν	N	Ν	Ν	Ν						Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν						Ν		Ν	Ν	20
	Asian	Ν	Ν	Ν		Ν	N	Ν	Ν	Ν						N		Ν	Ν	Ν	Ν								Ν		Ν		15
	Hispanic	Ν	Ν	N		Ν	N	N	N	N						Ν	N	Ν	N	N	Ν	N							N	N	Ν	Ν	19
	White	Ν	Ν	Ν		Ν	Ν	Ν	Ν	Ν						Ν	Ν	Ν	Ν	Ν	Ν	Ν							Ν		Ν		17
	2 or more	Ν	Ν	N		N	N	N	Ν	N					N	Ν	N	N	N	N	N		N						N		N	N	19

N = grade penalty; Blank = neutral or grade bonus

Gender x Race differences in grade anomalies

			BI	OLC	DGY	,	CHEMISTRY											MA	ATH			PHYSICS											
					LA	BS						L	AB	S									В		l	LAB	S						
		1	2	2	1	2	1	1	2	2	1	2	2	2	2	1	1	1	1	1	2	1	1	1	2	2	2	2	2	2	2	2	
		0	4	4	0	4	0	0	0	0	0	0	0	0	1	0	0	9	8	1	0	0	1	0	2	2	9	9	2	2	9	9	Total n
		2	0	2	4	4	1	5	1	2	3	7	8	9	0	5	9	0	0	1	5	7	1	8	3	4	5	6	1	2	8	9	
Women	Black	Ν	Ν	Ν		Ν	Ν	Ν	Ν	Ν		Ν				N	Ν	Ν	Ν	Ν	Ν	Ν							Ν		Ν	Ν	19
	Asian	Ν	Ν	Ν		Ν	Ν	Ν	Ν	Ν						N	Ν	Ν	Ν	Ν	Ν								Ν		Ν	Ν	17
	Hispanic	Ν	Ν	Ν		Ν	Ν	Ν	Ν	Ν						N	Ν	Ν	Ν	Ν	Ν	Ν	Ν						Ν		Ν	Ν	19
	White	Ν	Ν	Ν		Ν	Ν	Ν	Ν	Ν						N	Ν	Ν	Ν	Ν	Ν	Ν	Ν						Ν	Ν	Ν	Ν	20
	2 or	Ν	Ν	N		Ν	N	Ν	Ν	Ν						N	N	Ν	Ν	Ν	Ν	N	Ν						N	Ν	Ν	Ν	20
Men	Black	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν						N	Ν	Ν	Ν	Ν	Ν	Ν	Ν						Ν		Ν	Ν	20
	Asian	Ν	Ν	Ν		Ν	Ν	Ν	Ν	Ν						N		Ν	Ν	Ν	Ν								Ν		Ν		15
	Hispanic	Ν	N	Ν		Ν	Ν	Ν	Ν	Ν						N	N	Ν	Ν	Ν	Ν	N							N	Ν	Ν	Ν	19
	White	Ν	Ν	Ν		Ν	Ν	Ν	Ν	Ν						N	N	Ν	Ν	Ν	Ν	Ν							Ν		Ν		17
	2 or	Ν	N	Ν		Ν	Ν	Ν	Ν	Ν					Ν	N	N	Ν	N	N	Ν		Ν						N		N	Ν	19

Course GPA – First Semester Biology

Men > Women (mean = 2.24, 2.13) Asian men – highest Black men – lowest

GPAO - better performance in other classes

Women > = Men (mean= 3.05, 2.89)

AGA, Biology

- All students experience grade penalty
- Women penalty (-0.91) > men's (-0.67)*;
- Black women (-1.17) > White Women (-0.78)*
- Asian men and white men, least penalty
- Black women, women of 2+ races, greatest penalty

Similar pattern in physics

Second semester, calculus-based Physics

 Women greater penalty than men; Black women, greatest penalty

Gender and Race Achievement Differences

- Achievement Difference = difference in AGA
 - relative to expectations

Gender

- Women AGA Men AGA = Gender Difference
- +Positive favors women;

Race

- Underrepresented minority populations = URM = Black, Hispanic, 2+ races
- Majority group = non-URM = White, Asian
- URM AGA Non AGA = Race Difference
- +Positive favors URM

Achievement Differences

- Women and URM negative in majority of classes
- Different experiences for Gender and Race ٠

Gende	r W - M	kace u	- N
310L-240	-0.28	BIOL-240	-0.32
310L-242	-0.12	PHYS-299	-0.21
PHYS-299	-0.06	CHEM-202	-0.2
PHYS-298	-0.05	MATH-205	-0.2
PHYS-222	-0.03	MATH-180	-0.19
PHYS-221	-0.02	CHEM-201	-0.16
CHEM-201	-0.01	BIOL-242	-0.15
CHEM-202	0.03	PHYS-298	-0.12
MATH-180	0.07	PHYS-221	-0.1
MATH-111	0.08	MATH-111	-0.1
MATH-205	0.13	PHYS-222	0.1

Women from URM groups = multiple negative dimensions

Intersectional Experience

Mean = -0.02

Mean = -0.15

Q1: Do students experience grade bonuses or penalties in introductory science and math classes?

- Most students experience penalties in all SM classes
- Lecture penalties worse than lab
- Varies by course
 - Biology lecture classes stand out as greatest penalties
- Women and URM experience greater penalties and lower bonuses than men and non-URM students

Question 2a: What other factors influence course GPA?

- General Linear Model
 - By course
 - Majors lecture courses
 - Course GPA = dependent variable
 - Math score, English score, GPAO, Term = covariates
 - Gender-Race
- Model Selection
 - Best model for explaining course GPA

After accounting for other influential variables, does Gender-Race negatively impact course grade?

- Generate parameter estimates (regression coefficients) for Gender-Race categories for the best model
- Negative coefficient = penalty for that G-R category student

Best models to explain course GPA

- For all majors lecture courses, the best models included:
 - Gender-Race
 - **GPAO**
 - Math ACT subscore
 - Term control for variation across terms/classes

Course GPA = Gender-Race + GPAO + Math ACT + Term

Example: Biology lecture

Variables from best model are useful in predicting course GPA

Variable	df	F	Ρ	Partial Eta- Square
Gen - Race	9	11.02	<.0001	0.0019
Math	1	1535.27	<.0001	0.0291
GPAO	1	24180.1	<.0001	0.3203
Term	13	67.73	<.0001	0.0169

- Smaller effect of sex-race compared to other variables
- GPAO has very high predictive ability

Coefficients

- Negative = negative impact on course GPA
- Gender-Race

- G-R performance difference
 <u>Black women</u>
 <u>Women from 2+races</u>
 - ➢ Black men

Q2: After accounting for other factors that influence course GPA, is there a G-R performance difference?

- GPA is predicted by GPAO, math ACT, term
- Black women, women from 2+ races, Black men experience penalties

Implications and Actions

- Identify courses with achievement gaps
- Known pedagogical remedies
- The weed out climate = competitiveness, large courses, differential treatment, grading on a curve, and lack of faculty involvement; (Koebler, 2012; Reyes, 2011).
 - stronger in STEM disciplines compared to other fields
- Eliminate grading on a curve, encourage cooperation (Epstein 2006).
- Increase course structure (Freeman et al. 2011)
- CUREs, research experiences, cultural connections (Estrada et al. 2016)

Implications beyond

- Achievement is related to other factors that discourage persistence:
 - Stereotyping, social stigma, lack of supportive networks, notions of competence, science identity (Fries-Britt 1998; Treisman 1985; Estrada et al. 2016).
- Underrepresentation impacts culture of science
 - URM scientists are more likely than non-URMs to study issues specific to minority communities (Nichols 1997).
 - Racial, gendered ''culture of science'' may inhibit the development of URM research scientists, and who ultimately becomes a scientist (Estrada et al. 2016)
- Overall climate of the university and academic culture

Thanks!

Nick Ullrich, Becky Patterson, Shari Barrow and Bob Goldstein in Institutional Research

BLUE/Explorance for faculty grant

Model Selection

- Several methods for model selection, each use different measures
 - LASSO used by Matz et al. 2017
 - Backward Elimination
 - Stepwise
- Model stability
 - Bootstrapping resampling with replacement
 - Randomly created data set
 - Run model 500 times
 - Proportion of runs that produce the same model (selection frequency)
 - Compare across methods
- Backward elimination had higher stability

Chemistry lab – first semester

