Understanding Course Characteristics and Response Rates: A Path to Improving Courses and Use of Course Evaluation Results

Seungwon Chung, Stephanie Klein, & Aurore Phenow University of Minnesota

> August 4, 2021 Presentation at BlueNotes Global Virtual Experience Conference

INTRODUCTION

Student Evaluations of Teaching at UMN

Centralized administration

- Policy (Vice Provost for Faculty and Academic Affairs)
 - Core content
 - Data collection windows
 - High-level guidance on use of data
- Administration (Office of Measurement Services)
 - Administer program according to policy/guidelines
 - Facilitate exception requests when appropriate

Decentralized

• Actual use of results for improving instruction, tenure decisions

Prior UMN Research

Very little:

Limited resources within OMS + policy owner reluctance to release data to other requestors without a larger research plan

Until:

Grant program facilitating faculty research partnership + more consensus among stakeholders re: research questions

Purpose: Foundational Research

- Course evaluation results are complex, and other factors may be masked
- Beliefs and assumptions can reduce trust in evaluation results (e.g., "nobody likes morning classes")
- The more we know about student, course, and instructor characteristics in relation to how students evaluate courses, the better future research can be

METHODS

Data

Fall 2019

- Pre-COVID
- Classes were comprised of
 predominately in-person instruction
- Paper and online SET forms administered
- Final case count (with missingness): 45,379 (1,747 courses & 43,579 students)

Fall 2020

- During COVID
- Classes were comprised of predominately online instruction
- Only online SET forms were administered
- Final case count (complete data only): 35,745 (2,571 courses & 11,939 students)

Measures: Outcomes

- Student Evaluations of Teaching (SET)
 - SET have two sections: instructor and course
 - Consists of 6 instructor items and 7 course items
 - 6-point Likert-type scale (Strongly Agree, Agree, Somewhat Agree, Somewhat Disagree, Disagree, Strongly Disagree)
 - Fall 2019 and Fall 2020 forms contain the same items except:
 - Fall 2019 item "The course site was easy to use" was dropped
 - Fall 2020 addition: "The amount of effort needed to be successful in this course is reasonable"

Measures: Predictors

Course Predictors

- Gateway/non-gateway
- STEM/non-STEM
- Class size (total enrollment)
- Drop/fail/withdrawal (DFW) rate
- Class time (morning, afternoon, evening)
- Course level (graduate/undergraduate)
- Instruction mode (completely online, primarily online, partially online, faceto-face)

Response Rate

• Percentages based on the number of students who responded out of those enrolled in the course at the time of evaluation

Measures: Covariates

Student Characteristics

- International/domestic
- First generation
- Minority
- Gender (female/male)
- PELL recipient
- Composite ACT score
- High school GPA
- Current GPA
- Cumulative GPA
- Pass/no pass grade in course
- Credits taken

Instructor Characteristics

- Tenured/non-tenured
- Years of teaching at the university
- Doctorate/non-doctorate
- Gender (female/male)
- Minority
- International/domestic

- 1. Data Exploration
 - Descriptive statistics for all variables
 - Descriptive statistics for SET items
- 2. Fitting the item response theory (IRT) model
 - Basic IRT model (unidimensional vs. multidimensional)
 - Cross-classified multilevel IRT model
 - Fit the models separately for 2019 and 2020 data

- A (multidimensional) cross-classified multilevel item response theory (IRT) model
 - Why IRT
 - Item-level data
 - Why cross-classified multilevel IRT
 - Item responses are nested within students; Item responses are nested within course; students and courses are not nested but crossed
 - Why multidimensional IRT
 - Students respond to questions about the course and the instructor

- **Multilevel cross-classified rating scale model** (Huang, Chung, & Cai, in preparation)
 - Rating scale model (RSM) (Andrich, 1978a, 1978b)
 - Appropriate for modeling Likert response scale data
 - Extension to cross-classified data structure
 - Adopting a novel parameterization of the nominal response model (NRM; Bock, 1972; Thissen, Cai & Bock, 2011; Thissen& Cai, 2016).
 - Estimation: Metropolis-Hastings Robins-Monroe (MH-RM) algorithm using flexMIRT (Cai, 2015)

The probability that student j (j = 0, ..., J) responds k (k = 0, ..., K) to item i (i = 0, ..., I) in his or her evaluation to course g (g = 0, ..., G) is

$$P(y_{ijg} = k | \eta_j, \xi_g; a^c, a^r, \boldsymbol{a}^s, \boldsymbol{c}_i) = \frac{\exp(z_{ijgk})}{\sum_{m=0}^{K-1} \exp(z_{ijgm})}$$

where
$$z_{ijgk} = a^c a_k^s \eta_j + a^r a_k^s \xi_g + c_{ik}$$

- η_j : student latent variable
- ξ_g : course latent variable
- a^c , a^r : item slopes, $a^s = (0,1,2,3,4)$: scoring function vector
- c_i : item *i*'s slope

Initial Analysis

- Model 1: a null model or unconditional model, i.e., a crossclassified multilevel RSM without predictors
- Model 2: a conditional model with course characteristics
- Model 3: a conditional model with response rate
- Model 4: a conditional model with course characteristics and response rate
- Model 5: Model 4 + interaction terms b/w course characteristics and response rate
- Model 6: Model 5 + student and instructor covariates

Initial Analysis

Figure 1. A multidimensional cross-classified multilevel IRT model examining the effects of course characteristics and response rates on student evaluation of teaching results

<u>____</u>

Final Models after Initial Analysis

- Unidimensional model
 - Correlation between Course and Instructor SET latent variables = .88
- No interaction terms
 - NEW Model 5: Model 4 + student and instructor covariates
 - Replaces:
 - Model 5 (Model 4 + interaction terms b/w course characteristics and response rate)
 - -Model 6 (Model 5 + student and instructor covariates)

Data Exploration

Response Rate

Fall 2019

• Average response rate: 57.86%

Fall 2020

• Average response rate: 51.80%

Course Characteristics

Course Characteristics	Statistic	Fall 2019	Fall 2020	Difference
Gateway	%	26.70	35.00	8.30
STEM	%	34.50	49.25	14.75
Graduate	%	12.00	9.50	-2.50
Enrollment Total	Mean	41.58	52.60	11.02
	Median	26.00	30.00	4.00
Drop/Fail/Withdrawal	%	5.38	6.03	0.65

<u>_~~</u>

Course Characteristics: DFW Rate

Fall 2019

Fall 2020

Distribution of Drop/Fail/Withdrawl Rate

<u>____</u>

Student Characteristics

Student Characteristics	Statistic	Fall 2019	Fall 2020	Difference
International	%	0.29	0.18	-0.11
First Generation	%	25.36	18.63	-6.73
Minorities	%	21.30	23.32	2.02
Male	%	32.78	38.68	5.90
PELL Recipients	%	20.38	14.91	-5.47
Composite ACT Score	Mean	27.00	28.50	1.50
	SD	4.31	3.91	-0.40
	Median	27	29	2.00
HS GPA	Mean	3.86	3.93	0.07
Cumulative GPA	Mean	3.45	3.51	0.06
Current GPA	Mean	3.50	3.64	0.14
Passing Grade	%	99.00	99.00	0.00

Instructor Characteristics

Instructor Characteristics	Statistic	Fall 2019	Fall 2020	Difference
Tenured	%	20.72	24.18	3.46
Teaching Years	Mean	5.80	5.14	-0.66
	Median	3.11	2.82	-0.29
Doctorates Degree	%	37.72	45.45	7.73
Males	%	48.25	52.70	4.45
Minority	%	20.26	28.58	8.32
International	%	6.22	11.92	5.70

SET Outcomes

ltem		2019		2020		t-test		
		Statistic		Statistic				
						Mean		
		Mean	Median	Mean	Median	difference	SE	p-value
Instructor	Prepared	5.53	6.00	5.49	6.00	-0.04	0.010	<.001
	Clear	5.29	6.00	5.23	6.00	-0.06	0.013	<.001
	Feedback	5.26	6.00	5.26	6.00	0.00	0.013	0.573
	Respect	5.64	6.00	5.64	6.00	0.00	0.009	0.906
	Recommend Instructor	5.31	6.00	5.25	6.00	-0.06	0.014	<.001
	Interactions	5.38	6.00	5.28	6.00	-0.10	0.012	<.001
Course	Understand	5.34	6.00	5.24	5.00	-0.10	0.012	<.001
	Interest	5.05	5.00	4.92	5.00	-0.13	0.015	<.001
	Technology	5.20	5.00	5.09	5.00	-0.11	0.012	<.001
	Grading	5.18	6.00	5.10	5.00	-0.08	0.014	<.001
	Recommend Course	5.13	6.00	5.03	5.00	-0.10	0.015	<.001
	Activities	5.29	6.00	5.10	5.00	-0.19	0.012	<.001
	Course Site	5.33	6.00					
	Effort			5.07	5.00			
Combined	Sum Instructor	32.42	35.00	32.15	34.00	-0.27	0.130	<.001
	Sum Course	36.53	38.00	35.54	36.00	-0.99	0.061	<.001
	Sum SRT	68.94	72.00	67.69	70.00	-1.25	0.076	<.001

Modeling

Results: Model 1 (Null model)

Intraclass correlation (ICC)

2020

- $ICC_{courses} = .21 \rightarrow 21\%$ of variability is associated with courses
- ICC_{students} = .29 → 29% of variability is associated with students

2019

- $ICC_{courses} = .19$
- $ICC_{students} = .36$

Item characteristic curve (ICC)

item with an average student

- 2020 $\hat{\xi}_g = -0.22(Gateway) 0.30(STEM) 0.00(Class size)$
 - -1.45(DFW rate) + 0.01(Class time: Afternoon)
 - 0.02(Class time: Evening) + 0.13(Course level: Grad)
 - -0.08(Instruction mode: CO) +0.01(Instruction mode: PA)
 - + 0.86(Instruction mode: PR)

	Logit	Odds	Probability
Gateway	-0.22	0.80	0.45
STEM	-0.30	0.74	0.43
DFW rate	-1.45	0.23	0.19
Course level_Grad	0.13	1.14	0.53
Instruction mode_PR	0.86	2.36	0.70

If the probability of responding a 6 vs. a 5 for a non-gateway course is 50%, then the probability of responding a 6 vs. a 5 for a gateway course is 45%. We see that the probability of scoring a 6 vs. a 5 is LOWER for a gateway course than a non-gateway course.

$$LogOdds = log \frac{\pi}{1-\pi} = 0.86(Instruction Mode: PR)$$

Odds =
$$\exp(\frac{\pi}{1-\pi}) = \exp(0.86) = 2.36$$

$$\pi = \exp(\frac{0 + 0.86}{1 - (0 + 0.86)}) = 0.70$$

2020

If the probability of responding a 6 vs. a 5 for a course taught in person is 50%, then the probability of responding a 6 vs. a 5 for a course taught primarily online is 70%. We see that the probability of scoring a 6 vs. a 5 is HIGHER for a course taught primarily online than a course taught in person.

2020 $\hat{\xi}_g = -0.22(Gateway) - 0.30(STEM) - 0.00(Class size)$ -1.45(DFW rate) + 0.01(Class time: Afternoon) -0.02(Class time: Evening) + 0.13(Course level: Grad) -0.08(Instruction mode: CO) + 0.01(Instruction mode: PA)+ 0.86(Instruction mode: PR)

2019 $\hat{\xi}_g = -0.43(Gateway) - 0.10(STEM) - 0.00(Class size)$ +0.00(DFW rate) + 0.01(Class time: Afternoon) - 0.19(Class time: Evening) - 0.10(Course level: Grad) - 0.28(Instruction mode: CO) - 0.06(Instruction mode: PA)

-0.06(Instruction mode: PR)

Results: Model 3 (Response rate)

2020
$$\hat{\xi}_g = 0.01$$
(Response rate)

2019
$$\hat{\xi}_g = 0.00 (Response rate)$$

Results: Model 4 (Course characteristics + Response rate)

2020 $\hat{\xi}_g = -0.21(Gateway) - 0.29(STEM) - 0.00(Class size)$

- -1.37(*DFW rate*) + 0.01(*Class time: Afternoon*)
- 0.01(*Class time: Evening*) + 0.13(*Course level: Grad*)
- 0.07(Instruction mode: CO) + 0.01(Instruction mode: PA)

+ 0.86(Instruction mode: PR) + 0.00(Response rate)

2019 $\hat{\xi}_g = -0.45(Gateway) - 0.10(STEM) - 0.00(Class size)$ +0.01(DFW rate) + 0.01(Class time: Afternoon) - 0.18(Class time: Evening) - 0.15(Course level: Grad) - 0.25(Instruction mode: CO) - 0.07(Instruction mode: PA) + 0.00(Instruction mode: PR) + 0.00(Response rate)

Results: NEW Model 5 (Model 4+ Instructor & student covariates)

- **2020** $\hat{\xi}_g = -0.25(Gateway) 0.24(STEM) 0.00(Class size)$
 - -1.19(*DFW rate*) + 0.03(*Class time: Afternoon*)
 - 0.01(Class time: Evening) + 0.13(Course level: Grad)
 - -0.07(Instruction mode: CO) -0.01(Instruction mode: PA)
 - + 0.91(Instruction mode: PR) + 0.00(Response rate)
 - 0.12(Faculty tenure) 0.01(Faculty time in jobs)
 - 0.03(Faculty doctorate) 0.19(Faculty gender: Male)
 - 0.13(Faculty minority) 0.12(Faculty International)
 - $\hat{\eta}_j = -0.10(International) + 0.00(First generation) + 0.05(Minority) + 0.08(Male) 0.01(PELL) 0.00(ACT score) + 0.03(HS GPA) + 0.15(Cur GPA) 0.12(Cum GPA) + 0.34(Course Grade: Pass) 0.00(Unit taken)$

Results: NEW Model 5 (Model 4+ Instructor & student covariates)

2019 • $\hat{\xi}_g = -0.44(Gateway) - 0.11(STEM) - 0.00(Class size) +0.01(DFW rate) - 0.01(Class time: Afternoon) -0.22(Class time: Evening) - 0.23(Course level: Grad) -0.29(Instruction mode: CO) - 0.08(Instruction mode: PA) -0.03(Instruction mode: PR) + 0.00(Response rate) +0.06(Faculty tenure) - 0.02(Faculty time in jobs) -0.02(Faculty doctorate) + 0.03(Faculty gender: Male) -0.23(Faculty minority) + 0.13(Faculty International)$ • $\hat{\eta}_j = 0.12(International) + 0.01(First generation) +0.01(Minority) - 0.01(Male) - 0.06(PELL) - 0.00(ACT score) + 0.00(HS GPA) + 0.01(Cur GPA) - 0.00(Unit taken)$

Discussion: Summary

- An enterprise-wide understanding of how the courses themselves may influence the SET
 - Gateway courses, STEM fields, DFW rates, mode of course administration
 - Comparison of during pandemic and pre-pandemic
- Advanced modeling approach
- (a) accommodates categorical variables
- (b) accounts for cross-classified multilevel data structure
- (c) allows for the inclusion of observed predictors and covariates in a latent factor model

- Significant course characteristic variables are:
 - Course type (Gateway, STEM, DFW rate)
 - Course level (Graduate)
 - Instruction mode (PR)
- Response rate is not related to student evaluation of teaching.
 - Response rate does not differently affect the relationship between course characteristics and item-level responses.
- Significant instructor & student characteristic variables are:
 - Instructor: tenure status, gender, minority
 - Student: minority, gender, current GPA, cumulative GPA, course grade

- Bias or "true" measure of teaching effectiveness?
- Some variables were not significant, but close, due only because of small sample
- Cautious interpretation on the Fall 2020 results
 - A potential impact of the COVID-19 pandemic
 - Implications for future course designs

- Sample size
 - Missing data handling
- Interactions among course-, instructor-, and student-related variables
- Nonlinear relationship with SET
- A closer look at variables of interest
 - Focus group
 - Individual interview
 - Targeted survey
- Extension to multidimensional model

With future research, guide department heads, chairs, and tenure review committee members on the correct use of the instructor and course evaluations

- Guidance on the usage of the course evaluation for teaching effectiveness
- Course design characteristics that can be implemented to improve student experience
- Additional support for students

Acknowledgements

- Thank you for listening.
- We would like to thank the BlueNotes Group for sponsoring this work, and Melanie Forstie (Office of Measurement Services) and Office of Institutional Research for providing data.
- Any errors are on my own.

UNIVERSITY OF MINNESOTA Driven to Discover®

Crookston Duluth Morris Rochester Twin Cities

The University of Minnesota is an equal opportunity educator and employer.