
Explorance API Ecosystem for
Interoperability

Product Architecture Update

Presenters

• Jonathan Lapierre (CTO) - jlapierre@explorance.com

• Muthana Kubba (Solutions Architect) – mkubba@explorance.com

Before We Start

• This presentation is very open to questions and feedback

• We will pause and ask questions during the presentation

• A final question round will be available at the end

Please turn off your cell phone notifications

API?

Quick Overview

API

• What does API stand for?

Answer: Application Programming Interface

API

• Who has experience with APIs?

• Levels

‒ Beginner: I understand what they are but did not venture too deep

‒ Intermediate: I (or my team) have used APIs and understand the concepts

‒ Advance: I have used them, understand the concepts and the overall standards

API

• Current Blue model

‒ Blue currently uses SOAP API (Often called SOAP Web Services)

‒ Functionality based

‒ XML based

‒ Costly on bandwidth

‒ No caching

‒ No throttling

API

• REST API

‒ Resource based

‒ Uniform Interface

‒ Guideline based

• Web API

‒ Functionality based

‒ Optimized for machine to machine

‒ Unstructured

API

• GraphQL

‒ Application Layer driven

‒ Highly decoupled architecture

‒ Language HTTP agnostic

‒ Strongly Typed

Why would you need APIs?

• Drive Web Interfaces

• Mobile Applications

• Automation of Processes

• Code on Demand (Your Backend)

• Infrastructure as Code

Let’s pause

• So far so good?

Access level

• Public

‒ Publicly available and accessible via a
privilege-based system

• Internal

‒ Internally accessible among
Explorance sub-systems

• Private

‒ Accessible solely by a sub-system

‒ BFF realm (Back-End for Front-End)

Our stance

• Explorance has selected REST moving
forward

‒ We produced an internal REST standard
that complies with the industry

• We are using 80% of our APIs internally

‒ Keeps public API consistency

‒ We are consuming them before you do

• GraphQL are occasionally used for BFF
(Backends for front-ends)

Data In/Data Out

Data Store (IN) / Data Warehouse (OUT)

Questions?

Data Store (IN)

Data Store - Containers

Key Benefits of Our Data Store APIs

• Segregation of concerns between the integrations and projects

• Flexibility (Choose what and when to synchronize)

• Hardening of processes and security

• Unified data flow across applications

• Standardization

‒ Resource driven exchanges

‒ JSON DTO

• On demand action(s) via code

• Community Site - Sample application(s)

What’s Next

Reverse APIs (Webhooks)

• A webhook can be thought of as a type of API that is
driven by events rather than requests

Message Bus Registration

• Message Bus and Message Queues are registration-
based event systems that can interact with subscribers
based on specific messages

Putting It All Together – Workflows

Example

‒ A user fills in a survey using Blue

‒ A web hook request gets sent out to an external system

‒ If a condition is met, the external system creates a user
followup using the Public API

‒ The public API creates an event msg that a new
user followup was created

‒ User is notified using Mobile app

Use Case: Institution wants to follow-up with raters based on a condition

Questions?

Warehouse APIs

• For exporting data from Explorance systems to your own
data warehouse

• We will provide sample code for importing into PowerBI

• We will provide a Web Connector for importing into Tableau

• Swagger Link

https://app.swaggerhub.com/apis-docs/mkubba_explorance/DW_Export_APIs/1.0.0

Documentation and Community

• Our upcoming APIs will use Open API and Swagger for documentation.

• We are building a Centralized Developer Network online help tailored-made for
API consumption.

• We are creating a public Github project to empower our customers and API
consumers.

Questions?

Thank you

• Please reach out and exchange on Slack or on our
community site

